文章编号:1001-6880(2015)6-1007-04

金刚纂的化学成分及其抗 HIV 和抗肿瘤活性研究

李洪梅,王若菲,李蓉涛*

昆明理工大学 生命科学与技术学院,云南昆明 650500

摘 要:从金刚纂全草中分离得到一个新的天然来源的阿替生烷型二萜,3-methyl-agallochaol C(1),以及 13 个已知化合物。其中,化合物 4 和 9 具有一定的抗 HIV-1 活性,化合物 10 具有一定的抗肿瘤活性。

关键词:金刚纂;3-methyl-agallochaol C;抗 HIV;抗肿瘤

中图分类号:R284.1

文献标识码:A

DOI:10.16333/j.1001-6880.2015.06.012

Chemical Constituents from *Euphorbia neriifolia* and Their Related Anti-HIV and Anti-cancer Activities

LI Hong-mei, WANG Ruo-fei, LI Rong-tao*

Faculty of Life Science and Technology, Kunming University of Science of Technology, Kunming 650500, China

Abstract: Systematic investigation on the whole plant of *Euphorbia neriifolia* led to the isolation of a new natural atisane diterpenoid, 3-methyl-agallochaol C (1), along with thirteen known compounds (2-14). Among them, compounds 4 and 9 exhibited moderate anti-HIV-1 activity, and compound 10 possessed moderate anti-cancer activity.

Key words: Euphorbia neriifolia; 3-methyl-agallochaol C; anti-HIV; anti-cancer

Introduction

Human immunodeficiency virus (HIV) is the etiologic agent of the acquired immunodeficiency syndrome (AIDS), a disease that already claimed the lives of more than 25 million people. The global incidence of HIV infection in 2010 was estimated to be approximately 33.2 million people [1]. Current antiretroviral drugs are vitally important to improve the quality and prolong the life of HIV/AIDS patients. Nevertheless, these drugs have many disadvantages including resistance, toxicity, limited availability, high cost and lack of any curative effect [2]. Thus, the need and demand has prompted an intense research effort to discover new, selective and safe drugs for the treatment of HIV/AIDS. Natural sources, particularly plants, are an excellent source of anti-HIV agents. Southern China, especially Yunnan Province, possess an abundant plant biodiversity and a long history of medicinal use of plants, so many plants may contain novel anti-HIV constituents.

Euphorbia neriifolia Linn. (Euphorbiaceae), traditional Dai medicine in China, is a landscape plant widely cultivated in the south and southwest of Yunnan Province and used for hedges [3]. This plant produces milky latex which possesses several applications in folk medicines, such as irritant, emetic, purgative and diuretic [4]. The plant extracts were demonstrated to exhibit antihepatotoxic and cytotoxic activities [5]. In order to discover anti-HIV agents of natural origin, different parts (EtOAc, n-BuOH and H₂O parts) of 95% EtOH extracts of E. neriifolia were evaluated for their anti-HIV-1 activities, using AZT as positive control (EC_{50} = 0.008 µg/mL). Results showed that EtOAc part exhibited potential anti-HIV-1 activity with an EC50 value of 1. 26 µg/mL. Bioassay-guided isolation of the EtOAc part led to the purification of fourteen compounds (1-14), including a new natural atisane diterpenoid, 3methyl-agallochaol C (1). Among them, compounds 4 and 9 possessed moderate anti-HIV-1 activity. In addition, in view of the cytotoxic activity of this plant reported previously, the cytotoxicities of isolated compounds

were also tested.

Received: December 16, 2014 Accepted: April 28, 2015

Foundation item: National Natural Science Foundation of China (21262021)

^{*} Corresponding author Tel; 86-871-65920569; E-mail; rongtaolikm@163.com

Experimental

General

Optical rotation was run on a Jasco DIP-370 digital polarimeter (JASCO Corporation, Tokyo, Japan). NMR spectra were recorded over Bruker AM-400, DRX-500 and AVANCE III-600 instruments with tetramethylsilane (TMS) as an internal standard (Bruker BioSpin Group, Germany). ESI-MS was obtained with an API-Ostar-TOF instrument. Column chromatography (CC) was performed with silica gel (200-300 mesh, Qingdao Marine Chemical and Industrial Factory, China), MCI (MCI-gel CHP-20P, 75-150 µm, Mitsubishi Chemical Corporation) and Sephadex LH-20 (Amersham Biosciences AB, Uppsala, Sweden). Fractions were monitored by TLC plates (Si gel GF₂₅₄ Qingdao Marine Chemical and Industrial Factory, China), and spots were visualized by heating silica gel plates sprayed with 5% H₂SO₄-EtOH.

Plant material

The whole plant of *E. neriifolia* was collected from Xishuangbanna, Yunnan Province, PR China, in September 2008, and was identified by Mr. Jing-yun Cui. A voucher specimen (No. 20080901) was deposited at the Laboratory of Phytochemistry, Faculty of Life Science and Technology, Kunming University of Science of Technology.

Extraction and isolation

The air-dried and powdered woods of *E. neriifolia* (4.0 kg) were extracted with 95% EtOH (3 \times 6 L,24 h each) at room temperature, and then concentrated under vacuum to yield an extract (125 g), which was suspended in $\rm H_2O$ (2 L) and then extracted with EtO-Ac (4 \times 2 L). The EtOAc extract (66.0 g) was separated by MCI, eluting with MeOH/H₂O (gradient 30%,60%,90% and 100%), to afford fractions A-E. Fr. C (1.6 g) was subjected to silica gel CC (200-300 mesh), using petroleum ether/acetone (5:1) as eluent to give six subfractions, C-1 \sim C-6. Compound 1 (10 mg) was obtained from C-5 (45 mg) by silica gel CC eluted with petroleum ether/EtOAc (3:1).

3-Methyl-agallochaol C (1) colorless oil, C_{21} H_{34} O_4 , [α] $_{D}^{19}$ -15. 49 (c 0. 57, CHCl $_3$). ESI-MS (neg.)

m/z 373 (61, $[M + Na]^+$).

Bioactivities

HIV-1_{NI4-3} Replication Inhibition Assay

A previously described HIV-1 infectivity assay was used $^{\lceil 6,7 \rceil}$.

Cytotoxicity analysis

Cytotoxicity was determined by the sulforhodamine B (SRB) colorimetric assay [8].

Results and Discussion

Compound 1 was isolated as colorless oil. Its molecular formula, C_{21} H_{34} O_4 , was determined by ESI-MS (m/z 373, [M + Na] $^+$), in combination with 1 H and 13 C NMR data (Table 1), indicating five degrees of unsaturation. In the 1 H-NMR spectrum, a methoxyl group at $\delta_{\rm H} 3.63$ (3H,s), two tertiary methyls at $\delta_{\rm H} 1.76$ and

Table 1 1 H (600 MHz) and 13 C (150 MHz) NMR data of compound 1 in C_5D_5N

No.	$\delta_{\mathrm{H}}($ mult. $,J,\mathrm{Hz})$	$\delta_{\rm C}($ mult. $)$				
1	1.68 (2H,m)	34.7 (t)				
2	2.37 (1H, overlap)	29.4 (t)				
	2.46 (1H,m)					
3	-	175.0 (s)				
4	-	148.5 (s)				
5	$2.02~(1\mathrm{H},\mathrm{dd},J=2.6,12.8)$	51.4 (d)				
6	1.27 (2H,m)	25.6 (t)				
7	1.16 (1H,m)	39.1 (t)				
	1.28 (1H,m)					
8	-	33.7 (s)				
9	1.63 (1H,m)	44.0 (d)				
10	-	40.4 (s)				
11	1.22 (1H,m)	24.1 (t)				
	2.39 (1H, overlap)					
12	2.25 (1H,m)	33.4 (d)				
13	1.84 (1H, overlap)	24.1 (t)				
	1.44 (1H,m)					
14	1.84 (1H, overlap) 0.85 (1H, m)	28.1 (t)				
15	1.37 (1H,d, J = 13.6)	54.1 (t)				
	1.52 (1H,dd, J = 13.6, 2.8)					
16	-	74.2 (s)				
17	3.85 (1H, d, J = 11.0)	70.0 (t)				
	3.93 (1H,d,J = 11.0)					

18	1.76 (3H,s)	24.3 (q)
19	4.80 (1H,br s)	114.1 (t)
	4.93 (1H,br s)	
20	0.93 (3H,s)	18.5 (q)
-OCH ₃	3.63 (3H,s)	51.9 (q)

0. 93 (each 3H, s), two protons of terminal double bond at $\delta_{\rm H}$ 4.80 and 4.93 (each 1H, br s), as well as a pair of hydroxylmethyl protons at $\delta_{\rm H}$ 3.85 and 3.93 (each 1H, d, J=11.0) were observed. Apart from the methoxyl group ($\delta_{\rm C}$ 51.9,q), twenty carbons were observed in the 13 C NMR spectrum, including two methyls, nine methenes (including an oxygenated one

and a terminal double bond), three methines, four quaternary carbons (containing an oxygenated one and an olefinic one) and one carbonyl group. Comparison of the 1H and ^{13}C NMR spectroscopic data with those of agallochaol C $^{[9]}$ showed they were very similar, except for the presence of the methoxyl group ($\delta_{\rm H}$ 3.63, s; $\delta_{\rm C}$ 51.9,q) in 1. This methoxyl was attached to C-3 ($\delta_{\rm C}$ 175.0,s) because it showed HMBC correlation with C-3. Thus, the structure of 1 (Fig. 1) was determined and named as 3-methyl-agallochaol C, which was a new natural product synthesized by Guo $\it et al.$ in order to further confirm the structure of agallochaol C $^{[9]}$.

Fig. 1 Chemical structures of compounds 1-14

The known compounds were determined to be eurifoloid D (2) ^[5], ent-3 β , (13S)-dihydroxyatis-16-en-14-one (3) ^[10], ent-16 α , 17-Dihydroxyatisan-3-one (4) ^[10], ent-atisane-3 β , 16 α , 17-triol (5) ^[11], 4, 13 β -dihydroxy-14-oxo-3, 4-secoatis-16-en-3-oic acid methyl ester (6) ^[12], 13 β , 19-dihydroxy-3, 15-dioxoatis-16-

ene ($\mathbf{7}$)^[12], 13β -hydroxy-3, 15-dioxoatis-16-ene ($\mathbf{8}$)^[12], ent- 16α , 17-dihydroxykauran-3-one ($\mathbf{9}$) ^[13], 3-acetoxymethyl-5-[(E)-3-acetoxy-propen-1-yl)]-2-(4-hydroxy-3-methoxyphenyl)-7-methoxy-2, 3-dihydrobenzofuran ($\mathbf{10}$) ^[14], taraxerol ($\mathbf{11}$) ^[15], 9β , 19-cyclolanostan- 3β -ol ($\mathbf{12}$) ^[15], 6, 7, 8-trimethoxyl-coumarin

 $(13)^{[15]}$, and 3,3'-di-0-methylellagic acid $(14)^{[15]}$ by comparison of their spectral data with literature values.

The anti-HIV-1 activity of compounds **3-5**,**8**,**9** and **11-13** were evaluated using AZT as positive control (EC₅₀ = 0.0086 \pm 0.0015 μ g/mL), compounds **4** and **9**

exhibited moderate anti-HIV-1 activity with EC₅₀ values of 6.55 \pm 2.24 and 12.3 \pm 3.75 $\mu g/mL$, respectively. In addition, the cytotoxicities of compounds **3-5** and **8-13** against a panel of human cancer cell lines were tested with Paclitaxel as positive control, and compound **10** possessed moderate anti-cancer activity (Table 2).

Table 2 Cytotoxicity SRB assay of compounds 3-5,8-13 and paclitaxel

Compounds -		Cell Line (IC ₅₀ , µM)				
	A549	MDA-MB-231	KB	KB-VIN		
3	> 10	> 10	> 10	> 10		
4	> 10	> 10	> 10	> 10		
5	> 10	> 10	> 10	> 10		
8	> 10	> 10	> 10	> 10		
9	> 10	> 10	> 10	> 10		
10	7.248 ± 0.136	4.796 ± 0.044	4.659 ± 0.011	5.519 ± 0.107		
11	> 10	> 10	> 10	> 10		
12	> 10	> 10	> 10	> 10		
13	> 10	> 10	> 10	> 10		
Paclitaxel	0.005230 ± 0.000852	0.004354 ± 0.000978	0.002899 ± 0.000202	1.298787 ± 0.060698		

References

- 1 Huang N, Yang LM, Li XL, et al. Anti-HIV activities of extracts from Pu-erh tea. Chin J Nat Med, 2012, 10:347-352.
- 2 Klos M, Venter MVD, Milne PJ, et al. In vitro anti-HIV activity of five selected south African medicinal plant extracts. J Ethnopharmacol, 2009, 124:182-188.
- 3 Chen Y, Tian XJ, Li YF, et al. Terpenoids from Euphorbia antiquorum L. Acta Pharm Sin, 2009, 44:1118-1122.
- 4 Gewali MB, Hattori M, Tezuka Y, et al. Four ingol type diterpenes from Euphorbia antiquorum L. . Chem Pharm Bull, 1989, 37:1547-1549.
- 5 Zhao JX, Liu CP, Qi WY, et al. Eurifoloids A-R, structurally diverse diterpenoids from Euphorbia neriifolia. J Nat Prod, 2014,77;2224-2233.
- 6 Zhu CB, Zhu L, Holz-Smith S, et al. The role of the third β strand in gp120 conformation and neutralization sensitivity of the HIV-1 primary isolate DH012. Proc Natl Acad Sci, 2001, 98;15227-15232.
- 7 Qian KD, Kuo RY, Chen CH, et al. Anti-AIDS agents 81. Design, synthesis and structure-activity relationship study of

- betulinic acid and moronic acid derivatives as potent HIV maturation inhibitors. *J Med Chem*, 2010, 53;3133-3141.
- 8 Zhang ZJ, Tian J, Wang LT, et al. Design, synthesis and cytotoxic activity of novel sulfonylurea derivatives of podophyllotoxin. Bioorg Med Chem, 2014, 22;204-210.
- 9 Wang JD, Li ZY, Guo YW. Secoatisane-and isopimaranetype diterpenoids from the Chinese mangrove Excoecaria agallocha L. . Helv Chim Acta, 2005, 88:979-985.
- 10 Wang H, Zhang XF, Ma YB, et al. Diterpenoids from Euphorbia wallichii. Chin Trad Herb Drugs, 2004, 35:611-614.
- 11 Jia ZJ, Ding YL. New diterpenoids from *Euphorbia sieboldiana*. *Planta Med*, 1991, 57:569-571.
- 12 Liu JH, Latif A, Ali M, et al. Diterpenoids from Euphorbia neriifolia. Phytochem, 2012, 75:153-158.
- 13 Wang H, Zhang XF, Luo XD. An ent-kaurane diterpene from Euphorbia wallichii. Nat Prod Res Dev, 2006, 18:53-54.
- 14 Valcic S, Montenegro G, Timmermann BN. Lignans from *Chilean Propolis*. J Nat Prod, 1998, 61:771-775.
- 15 Tian XJ. Studies on the chemical constituents and biological activities of *Euphorbia antiquorum* L. Wuhan: South-Central University for Nationalities, MSc. 2008.