文章编号:1001-6880(2016)8-1171-05

苦楝果实中具有细胞毒活性的苯丙素类成分

曾发古1,2,苏倩1,邸迎彤2*,郝小江1,2*

1昆明医科大学药学院暨云南省天然药物药理重点实验室,昆明 650031;

2中国科学院昆明植物研究所 植物化学与西部植物资源国家重点实验室,昆明 650201

摘 要:为了研究苦楝($Melia\ azedarach$)中的化学成分,我们采用柱层析的方法从苦楝的果实中分离得到 6 个化合物 mesendannin A(1)、(+)-Pinoresinol(2)、(-)-Eudesmin(3)、(-)-Drodehyrodiconiferyl alcohol(4)、(-)-Jatrointelignan D(5)、(-)-Dihydrodehyrodiconiferyl alcohol(6)。其中化合物 1 为一个新的苯丙素类二聚体化合物。所有化合物的结构主要通过各种光谱方法,特别是二维核磁谱的方法进行鉴定。化合物 1 对 5 种人体肿瘤细胞表现出中等强度的细胞毒活性。

关键词: 苦楝; 楝科; 苯丙素; 细胞毒活性

中图分类号: Q946.91; R284.1

文献标识码:A

DOI:10.16333/j.1001-6880.2016.8.001

Penylpropanoids with Cytotoxic Activity from the Fruits of Melia azedarach

ZENG Fa-gu^{1,2}, SU Qian¹, DI Ying-tong^{2*}, HAO Xiao-jiang^{1,2*}

¹Yunnan Key Laboratory of Pharmacology for Natural Products Research, Kunming Medical University,

Kunming 650031, China; ²State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming

Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

Abstract: In this study, a new penylpropanoid dimer, mesendannin A (1), along with 5 known ones (+)-Pinoresinol (2), (-)-Eudesmin (3), (-)-Drodehyrodiconiferylalcohol (4), (-)-Jatrointelignan D (5) and (-)-Dihydrodehyrodiconiferyl alcohol (6) were isolated from the fruits of *Melia azedarach*. Their structures was elucidated on the basis of spectroscopic methods, especially 2D NMR techniques. Compound 1 showed medium cytotoxic against five human tumor cell lines.

Key words: Melia azedarach; Meliaceae; penylpropanoid; cytotoxic activity

Introduction

The genus Melia (Meliaceae) comprises three species in the world and is widely distributed in Asian and the south of tropical Africa^[1]. As a traditional Chinese medicine, the fruit and bark of this plant have long been used as insect antifeedant and anthelmintic ^[2]. The chemical components of different parts of this plant have been well studied previously, leading to isolation of diverse bioactive compounds including limonoids, penylpropanoids and steroids^[3-5]. As a part of our continuing search for bioactive compounds from Meliaceae

family, six penylpropanoids (1-6) were obtained, including a new one. In addition, the cytotoxicity of the isolated compounds against five human tumor cell lines (Hela, MCF-7, A549, MGC-803 and COLO-205) was evaluated by an MTT assay. Herein, we report the isolation, structural elucidation, and cytotoxicity of these compounds.

Fig. 1 Chemical structures of compounds 1-6

Received: April 22,2016 Accepted: June 15,2016

Foundation item; This work was supported financially by the Science Foundation of Yunnan (2014A050); Technological Leading Talent Project of Yunnan (2015HA020); The Xibuzhiguang Project (grant to Y.-T. Di), Central Asian Drug Discovery and Development Center of Chinese Academy of Sciences (to Xiao jiang Hao)

* Corresponding author Tel; 86-871-5223070; E-mail; diyt@ mail. kib. ac. cn; haoxj@ mail. kib. ac. cn

Materials and Methods

General experimental procedures

NMR spectra were performed on Bruker AM-400 instruments with TMS as the internal standard. IR spectra were recorded on a Bio-Rad FTS-135 spectrometer with KBr pellets, whereas UV date were measured using a UV-2410A spectrophotometer. Bruker HCT/E Squire and Waters Autospec Premier P776 mass spectrometers were used to measure ESI-MS and HR-ESI-MS, respectively. Semi-preparative HPLC was performed on a waters X-select (5 μ m; 25 cm \times 9.4 mm i. d.), Rp-C18 (40-63 µm, Merck, Darmstadt, Germany). Column chromatography was performed on silica gel (60-80, 200-300 and 300-400 mesh, Qingdao Marine Chemical Inc., China), Sephadex LH-20 (40-70 µm, Amersham Pharmacia Biotech AB), MCI gel 20P (75-150 µm, Mitsubishi Chemical Corporation, Tokyo, Japan). Fractions were monitored by TLC (GF₂₅₄, Qingdao Marine Chemical Co. Ltd., Qingdao, China), and by heating silica gel plates sprayed with 5% H₂SO₄ in ethanol.

Plant material

The dried fruits of *M. azedarach* were collected in Yunnan province of China in October 2013 and was identified by Dr. Jia-Hui Zhang. A voucher specimen (KIB-HXJ20130021) was deposited at the Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences.

Extraction and isolation

The air-dried powdered fruits (40 kg) were extracted 3 times (4,3 and 3 h) with MeOH. The combined MeOH extracts were concentrated in vacuo at 50 °C to give the crude residue (3 kg), which was re-suspended in water and then partitioned with EtOAc. The EtOAc fraction was processed with a silica gel column (0.2 m $\times 0.1$ m,100 to 200 mesh), and eluted with a gradient of petroleum ether-acetone (from 10:1 to 0:1) to yield 5 fractions (1-5). Fr. 3 (5 g) was then separated over a RP-C18 column (MeOH-H2O 4:6-10:0) to obtain Fractions (3A-3C). Fr. 3A (300 mg) was chromatographed on a silica gel column (300-400 mesh), eluted with petroleum ether/acetone (20:1), further purified

by semi-preparative HPLC (MeOH/H $_2$ O 60: 40, v/v, t_R = 15 min) to yield compound 1 (10 mg). Fr. 3B (2 g) was then purified on a silica gel column (300-400 mesh) eluted with petroleum ether/actone (10:0-1:1) to yield 2 (200 mg) and 3 (400 mg). Fr. C (1.5 g) was separated by Sephadex LH-20 eluted with MeOH and then applied to a silica gel column (300-400 mesh) eluted with petroleum ether/acetone (30:1,20:1 and 10:1) to yield compounds 4 (50 mg),5 (18 mg),6 (170 mg). The purity of compounds 1-6 were 95% as determined by TLC and HPLC.

Cytotoxicity assays

Cytotoxicity evaluations were performed on five human cell lines (Hela, MCF-7, A549, MGc-803 and COLO-205) using the MTT method described in literature elsewhere^[6]. Cytotoxicity evaluations were performed according to a previously described protocol^[7]. Doxorubicin was used as a positive control substance. The IC₅₀ values were calculated by the Reed and Muench method^[8].

Results and Discussion

Structural identification

Mesendannin A (1): white amorphous powder; ¹H NMR and 13 C NMR data; see Table 1. [α] $_{D}^{22}$ = -0. 66 ($c=0.6\,, \mathrm{MeOH}$). IR $\nu_{\mathrm{max}}(\,\mathrm{KBr})\,; v_{\mathrm{m}}=\,3420\,$ ($\mathrm{OH})$, 2935, 1517, 1431, 1277, 1121, 1154, 1115, 1087, 1035 cm⁻¹. ESI-MS: $m/z = 439 [M + H]^+$. HR-ESI-MS: $m/z = 439.1876 \left[M + H \right]^+$ (cald. for 439.1884). Compound 1 was obtained as a white amorphous powder. Its molecular formula was determined to be C₂₂H₃₀ O_9 by HR-ESI-MS from the ion at m/z 439. 1876 M + MH] + (cald. for 439. 1884). However, ¹³ C NMR resonances were observed for only 11 carbon atoms, indicating that 1 must be a symmetric dimer. The eight degrees of unsaturation implied by the molecular formula were accounted for two benzyl groups. The ¹H and ¹³C NMR in combination with HSQC data (Table 1) revealed that each monomer of compound 1 possessed one 1, 3, 4-trisubstituted aromatic moiety ($\delta_{\rm H}$ 6.90, 6.84, and 6.80), two methoxyls at δ_{C} 56.6 and 55.9, two sp³ methines at $\delta_{\rm C}$ 75.7 and 84.3, and one methylene at δ_{C} 62. 5. The $^{1}\text{H-}^{1}\text{H}$ COSY and HSQC spectra of

Table 1	1 H (400 MHz) and	13 C (100 MHz)	data of 1 in	$CDCl_3(\delta \text{ in ppm}, J \text{ in Hz})$
---------	------------------------	---------------------	--------------	--

Position	$oldsymbol{\delta_{ ext{H}}}^a$	$oldsymbol{\delta}_{ ext{C}}^{\;\;a}$
1,1′	-	129.5
2,2'	$6.90 (2 \times 1 \text{ H,d,} J = 1.4 \text{ Hz})$	109.4
3,3'	-	146.9
4,4′	-	145.8
5,5′	$6.84 (2 \times 1 \text{ H,d,} J = 8.0 \text{ Hz})$	114.4
6,6′	$6.80 (2 \times 1 \text{ H,dd}, J = 8.0 \text{ Hz,} 1.4 \text{ Hz})$	120.9
7,7′	$4.12 (2 \times 1 \text{ H,d,} J = 8.2 \text{ Hz})$	84.3
8,8′	$3.72 (2 \times 1 \text{ H,m})$	75.7
9a,9′a	$3.54 (2 \times 1 \text{ H}, \text{dd}, J = 12.0 \text{ Hz}, 3.6 \text{ Hz})$	62.5
9b,9′b	$3.36 (2 \times 1 \text{ H,dd}, J = 11.8 \text{ Hz,} 5.8 \text{ Hz})$	-
3,3′-OCH ₃	$3.82 (2 \times 3 H,s)$	55.9
7,7′-OCH ₃	$3.26 (2 \times 3 \text{ H,s})$	56.6

^a Assignments were based on the HMBC, HSQC, COSY and DEPT experiments.

1 revealed the existence of two structural fragment of C-7 (C-7') to C-9 (C-9'), and C-5 (C-5') to C-6 (C-6'), drawn with bold bonds, as shown in Fig. 2. The HMBC correlations of MeO/C-3 and MeO/C-7 located the two MeO at C-3 and C-7, respectively. The connectivity of C-7 and C-1 was established by the HMBC correlations from H-7 to C-1, C-2, and C-6. The remaining methine C-8 was implied to join two monomers together via oxygen atom. Thus, compound 1 with a dimeric structure was unambiguously established as shown in Fig. 1.

Due to the structural flexibility of 1, ROESY correlation of 1 could not provide direct evidence about the relative configuration of C-7(7')/C-8(8'). However, the large coupling constant between H-7(7') and H-8(8') ($J = 8.2 \, \text{Hz}$) was observed. As shown in previous report, compounds with a guaiacylglycerol unit, have the $J_{7,8}$ value 7-9 in the threo-form, and have the $J_{7,8}$ value 3-6 in the erythro-form. [13-16] Thus, the C-7/C-8 system

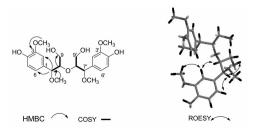


Fig. 1 ¹H-¹H COSY (Bold), Key HMBC and ROESY correlations of 1

was determined as threo-configuration and compound 1 was elucidated as Mesendannin A. NMR data and detailed experimental data of 1 is available free of charge via the Internet at http://www.trcw.ac.cn.

(+)-Pinoresinol^[9] (**2**): white amorphous powder; ESI-MS m/z 381 [M + Na] +; molecular formula C_{20} $H_{22}O_6$; H NMR (400 MHz, CDCl₃): 6. 93 (2H, d, J = 1.4 Hz, H-2', 2''), 6. 85 (2H, d, J = 8.2 Hz, H-5',5''), 6. 78 (2H, dd, J = 8.0, 1. 6 Hz, H-6',6''), 4. 73 (2H, d, J = 4. 5 Hz, H-2,6), 4. 20 (2H, dd, J = 9. 0, 7. 0 Hz, H-4,8), 3. 86 (6H, s, 3', 3''-OCH₃), 3. 83 (2H, dd, J = 9. 3, 3. 62 Hz, H-4,8), 3. 08 (2H, m, H-1,5); C NMR (100 MHz, CDCl₃):148.7 (C-3',3''), 145.6 (C-4',4''), 132.3 (C-1',1''), 117.2 (C-5',5''), 114.3 (C-6',6''), 108.7 (C-2', 2''), 85.4 (C-2,6), 71.2 (C-4,8), 55.6 (3',3''-OCH₃), 54.3 (C-1,5).

(-)-Eudesmin^[10] (**3**): white amorphous powder; ESI-MS m/z 409 [M + Na]⁺; molecular formula $C_{22} H_{22} O_6$; H NMR (400 MHz, CDCl₃): 6. 98 (2H, d, J = 1. 4 Hz, H-2′, 2′′), 6. 80 (2H, d, J = 7. 8 Hz, H-5′, 5′′), 6. 81 (2H, dd, J = 8. 0, 1. 4 Hz, H-6′, 6′′), 4. 74 (2H, d, J = 4. 5 Hz, H-2, 6), 4. 24 (2H, dd, J = 9. 3, 6. 9 Hz, H-4, 8), 3. 89 (6H, s, 3′, 3′′-OCH₃), 3. 85 (6H, s, 3′, 3′′-OCH₃), 3. 88 (2H, dd, J = 9. 3, 6. Hz, H-4, 8), 3. 11 (2H, m, H-1, 5); C NMR (100 MHz, CDCl₃): 146. 7 (C-3′, 3′′), 145. 2 (C-4′, 4′′), 132. 7 (C-1′, 1′′), 118. 8 (C-5′, 5′′), 114. 3

(C-4, 8), 55. 8 $(3', 3''-OCH_3)$, 55. 4 $(4', 4''-CH_3)$ OCH₃),54.0 (C-1,5). (-)-Drodehyrodiconiferyl alcohol^[11] (4): white amorphous powder; ESI-MS m/z 381 $[M + Na]^+$ ($C_{20}H_{22}$ O_{61} H NMR (400 MHz, CDCl₃):6.89 (1H, s, H-6), 6. 86 (2H, s, H-2, 2'), 6. 82 (1H, dd, J = 8.0, 2.0)Hz, H-6'), 6. 56 (1H, d, J = 8.0 Hz, H-5'), 6. 51 (1H, d, J = 15.2 Hz, H-7), 6.13 (1H, m, H-8),5. 50 (1H,d,J = 6.0 Hz,H-7'),4. 18 (2H,d,J =6. 2 Hz, H-9), 3. 90 (3H, s, 3-OCH₃), 3. 80 (2H, m, H-9'), 3. 79 (3H, s, 3'-OCH₃), 3. 57 (1H, dd, J =12. 2.5. 8 Hz, H-8'); ¹³ C NMR (100 MHz, CDCl₂); 148. 1 (C-4), 146. 6 (C-3'), 145. 6 (C-4'), 144. 2 (C-3), 132. 8 (C-1'), 130. 8 (C-7), 130. 1 (C-1), 128. 2 (C-5), 124. 2 (C-8), 119. 9 (C-6'), 116. 7 (C-6),116.2 (C-5'),111.9 (C-2),108.5 (C-2'),88.2 (C-7'),73.8 (C-9),63.8 (C-9'),56.8 $(3-OCH_3)$, 56. 5 (3'-OCH₃),53. 1 (C-8'). (-)-Jatrointelignan D^[11] (5): white amorphous powder; ESI-MS m/z 395 $[M + Na]^+ (C_{21} H_{24} O_6); {}^1H$ NMR (400 MHz, CDCl₃) δ :6. 91 (1H, s, H-6), 6. 90 (2H, s, H-2, 2'), 6. 87 (1H, dd, J = 8.1, 1.8 Hz, H-6'), 6. 57 (1H, d, J = 8.1 Hz, H-5'), 6. 55 (1H, d, J= 15.8 Hz, H-7), 6.19 (1H, m, H-8), 5.52 (1H, d, d)J = 6.2 Hz, H-7', 4. 29 (2H, d, J = 6.2 Hz, H-9), $3.90 (3H, s, 3-OCH_3), 3.80 (2H, m, H-9'), 3.80$ (3H, s, 3'-OCH₃), 3.75 (3H, s, 9-OCH₃), 3.50(1H, dd, J = 12.4, 6.2 Hz, H-8'); C NMR (100) MHz, CDCl₂): 149.4 (C-4), 149.1 (C-3'), 147.5 (C-4'), 145. 5 (C-3), 134. 5 (C-1'), 134. 4 (C-7), 132. 2 (C-1),130. 3 (C-5),124. 2 (C-8),119. 9 (C-6'), 116.7 (C-6), 116.2 (C-5'), 111.9 (C-2),

(C-6',6''), 108.7 (C-2',2''), 85.8 (C-2,6), 71.5

(-)-Dihydrodehyrodiconiferyl alcohol^[12] (**6**); white amorphous powder; ESI-MS m/z 383 [M + Na] ⁺ (C₂₀ H₂₄O₆); ¹H NMR (400 MHz, CDCl₃): 6.89 (1H, s, H-6), 6.86 (2H, s, H-2, 2'), 6.82 (1H, dd, J = 8.0,2.0 Hz, H-6'), 6.56 (1H, d, J = 8.0 Hz, H-5'), 5.50 (1H, d, J = 6.0 Hz, H-7'), 4.18 (2H, d, J

110.5 (C-2'),89.5 (C-7'),74.3 (C-9),64.8 (C-

9'),56.8 (3-OCH₃),56.5 (3'-OCH₃),55.2 (9-

OCH₃),55.1 (C-8').

= 6.2 Hz,H-9),3. 90 (3H,s,3-OCH₃),3. 80 (2H,m,H-9'),3. 79(3H,s,3'-OCH₃),3. 57 (1H,dd, *J* = 12.2,5.8 Hz,H-8'),2. 65 (2H,m,H-7),2. 13 (2H,m,H-8); ¹³C NMR (100 MHz,CDCl₃):148. 1 (C-4), 146. 6 (C-3'),145. 6 (C-4'),144. 2 (C-3),132. 8 (C-1'),130. 1 (C-1),128. 2 (C-5),119. 9 (C-6'), 116. 7 (C-6),116. 2 (C-5'),111. 9 (C-2),108. 5 (C-2'),88. 2 (C-7'),73. 8 (C-9),63. 8 (C-9'),56. 8 (3-OCH₃),56. 5 (3'-OCH₃),53. 1 (C-8'),34. 3 (C-7),32. 5 (C-8).

Cytotoxicity assays

All the isolated compounds were evaluated for their cytotoxicities against five human tumor cell lines, Hela, MCF-7, A-549, MGC-803 and COLO-205, by the MTT methods. Doxorubicin was used as positive control with IC₅₀ of 0. 77, 1. 56, 1. 92, 1. 05 and 2. 22 μ M. The results showed that compound 1 showed medium cytotoxic against Hela, MCF, A549, MGC-803 and COLO-205 cell lines with IC₅₀ of 3. 92, 5. 63, 9. 33, 5. 95 and 6. 26 μ M, respectively.

References

- 1 Peng H, Mabberley DJ. Flora of China. Beijing: Science Press, 2008. 11, 116-117.
- Zhao L, Huo CH, Shen LR, et al. Chemical constituents of plants from the Genus Melia. Chem Biodivers, 2010, 7:839-859.
- Oelrichs PB, Hill MW, Vallely PJ, et al. Toxic tetranortriterpenes of the fruit of Melia azedarach. Phytochemistry, 1983, 22:531-534.
- 4 Nakatani M, Takao H, Miura I, et al. Azedarachol, a steroid ester antifeedant from Melia azedarach var. japonica. Phytochemistry, 1985, 24:1945-1948.
- 5 Carpinella MC, Giorda LM, Ferrayoli GG, et al. Antifungal effects of different organic extracts from Melia azedarach L. on phytopathogenic fungi and their isolated active components. J Agric Food Chem, 2003, 51:2506-2511.
- 6 Mosmann T. Rapid colorimetric assay for cellular growth and survival; application to proliferation and cytotoxicity assays. J Immunol Methods, 1983, 65:55-63.
- 7 Guo LL, He HP, Di YT, et al. Indole alkaloids from Ervatamia chinensis. Phytochemistry, 2012, 74:140-145.
- 8 Zhu F, Di YT, Li XY, et al. Neoclerodane diterpenoids from Scutellaria barbata. Planta Med, 2011, 77:1536-1541.
- 9 Cao L, Huang DL, Chen H. Chemical constituents from Calli-

- carpa macrophylla. Zhongguo Xiandai Zhongyao, 2014, 16: 733-739.
- 10 Cai XF, Lee IS, Kim YH, et al. Inhibitory lignans against NFAT transcription factor from Acanthopanax koreanum. Arch Pharmacal Res, 2004, 27:738-741.
- 11 Yuen MSM, Xue F, Mark TCM, et al. On the absolute structure of optically active neolignans containing a dihydrobenzo [b] furan skeleton. Tetrahedron, 1998, 54:12429-12444.
- 12 Yang YP, Cheng MJ, Teng CM, et al. Chemical and antiplatelet constituents from Formosan Zanthoxylum simulans. Phytochemistry, 2002, 61:567-572.
- 13 Li LY, Seeram NP. Further investigation into maple syrup yields 3 newlignans, a new phenylpropanoid, and 26 other

- phytochemicals. J Agric Food Chem, 2011, 59:7708-7716.
- 14 Matsumori N, Kaneno D, Tachibana K, et al. Stereochemical determination of acyclic structures based on carbon-proton spin-coupling constants. Amethod of configuration analysis for natural products. J Org Chem, 1999, 64;866-876.
- 15 Deyama T, Ikawa T, Kitagawa S, et al. The constituents of Eucommia ulmoides Oliv. V:isolation of dihydrox-ydehydrodiconiferyl alcohol isomers and phenolic compounds. Chem Pharm Bull, 1987, 35:1785-1789.
- 16 Wang H, Geng CA, Xu HB, et al. Lignans from the fruits of Melia toosendan and their agonistic activities on melatonin receptor MT1. Planta Med, 2015, 81:847-854.

《天然产物研究与开发》青年编委会

青年编委(以姓氏笔划为序)

NЛ	~ ***	L۵	***
ΙVΙ	em	be	rs

Members					
丁 克	戈惠明	王红兵	尹文兵	尹 胜	吕兆林
DING Ke	GE Huiming	WANG Hongbing	YIN Wenbing	YIN Sheng	LV Zhaolin
李良成	李国友	刘相国	孙黔云	孙桂波	孙昊鹏
LI Liangcheng	LI Guoyou	LIU Xiangguo	SUN Qianyun	SUN Guibo	SUN Haopeng
伍婉卿	陈益华	李芸霞	沐万孟	邱莉	汪海波
WU Wanqing	CHEN Yihua	LI Yunxia	MU Wanmeng	QIU Li	WANG Haibo
张炳火	林昌俊	欧阳杰	周文	易华西	罗应刚
ZHANG Binghuo	LIN Changjun	OU Yangjie	ZHOU Wen	YI Huaxi	LUO Yinggang
胡友财	高慧敏	唐金山	夏永刚	袁 涛	黄胜雄
HU Youcai	GAO Huimin	TANG Jinshan	XIA Yonggang	YUAN Tao	HUANG Shengxiong
韩淑燕	蓝蔚青	廖晨钟	潘卫东	薛永波	
HAN Shuyan	LAN Weiqing	LIAO Chenzhong	PAN Weidong	XUE Yongbo	