华泽兰内生真菌 Septoriella phragmitis 次级代谢产物 及其生物活性研究

张梦娇*, 邝天浩, 赵金诺, 朱 婷, 彭娟娟

三峡大学生物与制药学院 天然产物研究与利用湖北省重点实验室(中国轻工业功能酵母重点实验室),宜 昌 443002

摘 要:为研究华泽兰内生真菌 Septoriella phragmitis 的化学成分及其生物活性,运用硅胶柱柱色谱、半制备高效液相色谱等方法对其进行分离提纯,结合现代波谱技术鉴定化合物结构,从 Septoriella phragmitis 提取液中分离得到 10 个化合物,分别鉴定为腺苷(1)、cyclo-(S-Pro-S-Ile)(2)、5-羟基-2-羟甲基-4H-哌喃-4-酮(3)、 3α -hydroxyartemisinic acid(4)、leptosphaerone C(5)、1-氨基四氢化萘(6)、泽兰素(7)、 β -吲哚基丙氨酸(8)、环(丙氨酸-酪氨酸)二肽(9)、 β -D-fructopyranocy-($2\rightarrow 6$)-D-glucopyranose(10),所有化合物均为首次从华泽兰内生真菌 Septoriella phragmitis 中分离。对所得化合物采用对硝基苯基- β -吡喃半乳糖苷法测定 α -葡萄糖苷酶抑制活性,对硝基苯磷酸盐法测定 PTP1B 抑制活性,MTT 法测定胃癌细胞 HGC-27 抑制活性,标准精度对接法进行分子对接。化合物 6 和 7 有 α -葡萄糖苷酶抑制活性,IC₅₀值分别为 8.1、8.6 µg/mL;化合物 6、7 和 9 有 PTP1B 抑制活性,IC₅₀值分别为 6.5、8.2、0.5 µg/mL;化合物 5 和 6 有胃癌细胞 HGC-27 抑制活性,IC₅₀值分别为 12.2、16.8 µg/mL。分子对接显示化合物 6 和 7 与 α -葡萄糖苷酶和 PTP1B 蛋白有较强关联性,可作抗糖尿病先导化合物进行后续研究。

关键词: 华泽兰; Septoriella phragmitis; 次级代谢产物; 生物活性

中图分类号: R284 文献标识码: A

Secondary metabolites of endophytic fungus Septoriella phragmitis from Eupatorium chinense and its bioactivities

ZHANG Meng-jiao*, KUANG tian-hao, ZHAO Jin-nuo, ZHU Ting, PENG Juan-juan Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences(China Key Laboratory of Light Industry Functional Yeast), China Three Gorges University, Yichang

443002, China

Abstract: To study the chemical constituents and biological activities of the endophytic fungus *Septoriella phragmitis*, Silica gel column chromatography, semi-preparative high performance liquid chromatography and other methods were used to isolated and purified compounds. Modern spectrum technologies were applied to identify the structures of thoese isolated compounds. As a result, 10 compounds were isolated from the extract of

Septoriella phragmitis for the first time, named β-adenosine (1), cyclo-(S-Pro-S-Ile) (2), 5-hydroxy-2-methylol-4H-pyrane-4-ketone (3), 3\alpha-hydroxyartemisinic acid (4), leptosphaerone C (5), 5, 6, 7, 8-tetrahydronaphthalen-1-amine **(6)**, euparin (7),tryptophan (8),cyclo-(Ala-Tyr) β -D-fructopyranocy-(2 \rightarrow 6)-D-glucopyranose (10). The α -glucosidase inhibitory activity of the obtained compounds was determined by p-nitrophenyl- β -galactopyranoside method, the PTP1B inhibitory activity was determined by p-nitrophenyl phosphate method, the inhibitory activity of gastric cancer cell HGC-27 was determined by MTT method, and the molecular docking was performed by standard precision docking method. Compounds 6 and 7 showed α -glucosidase inhibitory activity with IC₅₀ values of 8.1 and 8.6 μ g / mL, respectively. Compounds 6,7 and 9 showed PTP1B inhibitory activity with IC₅₀ values of 6.5, 8.2 and 0.5 µg / mL, respectively. Compounds 5 and 6 showed inhibitory activity against gastric cancer cell HGC-27 with IC₅₀ values of 12.2 and 16.8 µg / mL, respectively. Molecular docking showed that compounds 6 and 7 had a strong correlation with α -glucosidase and PTP1B protein, which could be used as anti-diabetic lead compounds for subsequent research.

Key words: Eupatorium chinense; Septoriella phragmitis; secondary metabolites; bioactivities

植物内生真菌种类丰富,其代谢产物多种,这些代谢产物可能产生多种与宿主类似的活性物质[1]。现代药理学研究表明华泽兰内生真菌 Septoriella phragmitis 提取物有抗抑郁[2]、抗炎[3]、免疫调节[4]、抗氧化[5]等活性。张建芬等[6]从华泽兰中分离了 8 株内生真菌,将其发酵液的乙酸乙酯提取物进行了体外抗肿瘤试验,但缺乏单体化合物研究。课题组从华泽兰根部分离到一株内生真菌,菌种鉴定后确定与张建芬等分离的内生真菌不同,为 Septoriella phragmitis。目前未有文献报道其次级代谢产物的信息。为了进一步研究华泽兰内生真菌 Septoriella phragmitis 的物质基础,本研究对其化学成分进行分离和鉴定,并检测抗糖尿病和抗肿瘤活性,为寻找高效低毒的抗糖尿病先导化合物,开发利用这一药用真菌资源提供参考。

1 材料与方法

1.1 仪器与材料

Bruker AVANCE 400 MHz 核磁共振波谱仪(美国 Bruker 公司); Dionex Ultimate 3000型高效液相色谱仪(美国戴安公司); YMC-Pack ODS-A 液相色谱分析柱(Φ4.6*150mm,粒径 5μm)(日本 YMC 公司); LABCONCO 低温冷冻干燥仪(成都金凤液氮容器有限公司); 酶标仪 ELX-800(美国 BIOTEK 公司)。

正相色谱硅胶(200~300 目,烟台化学工业研究所); PDA、PDB 培养基(杭州百思生物科技有限公司); 葡聚糖凝胶(200~300 目,批号: 131118,上海蓝季科技有限公司); 胃癌细胞株(中国科学院上海生物科学研究所细胞库); MTT 粉末(纯度≥98%,批号: 530R0511, Solarbio 公司); 蛋白酪氨酸磷酸酶(纯度≥90%, 批号: SLCG8506, Sigma-Aldrich

公司); α -葡萄糖苷酶(纯度 \geq 99%,编号:G5003,Sigma-Aldrich 公司),对硝基苯基- α -D-吡喃葡萄糖苷(p-NPG)(纯度 \geq 98%,编号:N1627,Sigma-Aldrich 公司);对硝基苯基磷酸酯(p-NPP)(纯度 \geq 98%,编号:20106,Sigma-Aldrich 公司);紫杉醇(纯度 \geq 99%,编号:33069624,Merck 公司);阿卡波糖(纯度 \geq 98%,批号 A129816,Aladdin 公司);正钒酸钠(分析纯,批号:960702,北京天安联合制药有限工司);乙腈(色谱纯,美国天地有限公司);二氯甲烷、Na₂CO₃等其他试剂(分析纯,天力化学试剂有限公司)。

1.2 菌株的来源

华泽兰内生真菌 Septoriella phragmitis 由本实验室于 2016 年 10 月从湖北长阳的中药华泽兰根部中分离获得。将华泽兰根去除表层土壤,用自来水冲洗干净,75%酒精消毒后用无菌水冲洗 3 次,研磨静置得到菌悬液。对菌悬液进行梯度稀释,分别吸取 100 μL 菌悬液涂布于 PDA 培养基上,28 ℃恒温培养,观察,待长出菌丝后,用菌丝顶端纯化法,挑取菌丝顶端于新 PDA 培养基纯化,当不同颜色或形态的菌落生长出来后,继续以此法纯化至菌落为单一纯培养,接入 PDA 斜面,于 28 ℃培养箱培养 48 h,无菌液体石蜡封口,于 4 ℃冰箱中保藏,完成菌株分离。经形态学鉴定和菌株 ITS 序列分析,将菌株鉴定为 Septoriella phragmitis,已申请专利[7],并于 2022 年 9 月 13 日保藏于中国典型培养物保藏中心,保藏编号为 CCTCCNO:M20221413,分类命名:Septoriella phragmitis LH-1,保藏地址为武汉大学。

1.3 菌株的发酵、提取与分离

菌种用 PDA 培养基活化, 培养 5 d, 接入 PDB 培养基, 在 28 ℃、120 r/min 下培养 14 d, 分离发酵液和菌丝体。菌丝体 45 ℃烘干后用二氯甲烷:甲醇(1:1)浸泡,反复提取 3 次。 提取液经减压浓缩得浸膏 10 g, 与 8 g 正相硅胶(200~300 目)进行拌样。取 300 g 正相硅 胶加二氯甲烷浸泡 2h 后湿法装柱,柱体积为 2L。干法上样,二氯甲烷-甲醇($100:0\rightarrow 0:100$, V/V) 梯度洗脱得 30 个流分。将所得流分经半制备液相色谱(乙腈-水=100:0→90:10) 分析,相同流分合并,得 11 个组分 Fr.A~Fr.K。Fr.C 经半制备液相色谱(甲醇/水 =10:90→100:0, 8 mL/min) 分离得到 5 个组分 Fr.C.1~Fr.C.5, Fr.C.3 经半制备液相色谱 (甲醇/水=10:90→70:30, 2.0 mL/min) 得化合物 **1** (0.7 mg, t_R=9.5 min) 、**5** (2.5 mg, t_R=14 min)、**9**(0.8 mg, t_R=15.5 min)。Fr.D 经半制备液相色谱(甲醇/水=45:55→50:50, 2 mL/min) 进行分离得到 4 个组分 Fr.D.1~Fr.D.4, Fr.D.2 经半制备液相色谱(甲醇/水=10: 90→60:40, 2.0 mL/min) 分离得化合物 **10**(0.5 mg, t_R=7 min), Fr.D.4 经半制备液相色 谱(甲醇/水=10:90→100:0,2.0 mL/min)分离得化合物 8(0.6 mg,t_R=17 min)。Fr.E 经半制备液相色谱 (甲醇/水=10:90→70:30,2.0mL/min) 分离得化合物 2 (0.9 mg, t_R =9.5 min)。Fr.F 经半制备液相色谱(乙腈/水=20:80→70:30, 2.0 mL / min)分离得 6 个组分 Fr.F.1~Fr.F.6, 从 Fr.F.3 中得化合物 6 (1.2 mg, t_R=13 min), 取 Fr.H 分离得化合物 3 (0.9 mg, t_R=38 min)和 4(1.6 mg, t_R=40 min)。Fr.G 经半制备液相色谱(甲醇/水=20:80→70:30,

2.0 mL/min) 分离得化合物 7 (0.7 mg, t_R=19.5 min)。

1.4 生物活性筛选

1.4.1 化合物对α-葡萄糖苷酶抑制活性筛选

采用对硝基苯基-β-吡喃半乳糖苷法,以阿卡波糖溶液为阳性对照,对化合物 1~10 进行 α-葡萄糖苷酶抑制活性筛选: 样品组加 80 μL 样品溶液、20 μL 酶溶液,混匀,在 37 ℃孵育 15 min,加 20 μL 5 mmol/L p-NPG 反应,孵育 15 min,加 80 μL 1mol/L Na₂CO₃终止反应。样品空白组加 20 μL 1% PBS 代替酶溶液。酶活性组加 20 μL 酶溶液,混匀,在 37 ℃孵育 15 min,加 20 μL 5 mmol/L p-NPG 和 80 μL 1% PBS 反应,孵育 15 min,加 80 μL 1mol/L Na₂CO₃终止反应。酶空白组加 100 μL 5 mmol/L p-NPG 和 20 μL 5 mmol/L p-NPG 反应,孵育 15 min,加 80 μL 1mol/L Na₂CO₃终止反应。以 405 nm 处吸光度定量 p-NPG 释放量,按式(1)计算抑制率。

 $I=1-(A_1-A_2)/(A_3-A_4)\times 100\%$ (1)

式中, A_1 : 样品组吸光度; A_2 : 样品空白组吸光度; A_3 : 酶活性组吸光度; A_4 : 酶空白组吸光度。

1.4.2 化合物对 PTP1B 抑制活性测定结果

采用对硝基苯磷酸盐法,以正钒酸钠水溶液为阳性对照,对化合物 1~10 进行 PTP1B 抑制活性筛选:样品组加 170 μ L 样品溶液、20 μ L 酶溶液,混匀,在 37 $^{\circ}$ C孵育 15 min,加 10 μ L 5 mmol/L p-NPP 反应,孵育 15 min,加 80 μ L 1mol/L NaOH 终止反应。样品空白组 20 μ L 1% PBS 代替酶溶液。酶活性组加 20 μ L 酶溶液,混匀,在 37 $^{\circ}$ C孵育 15 min,加 10 μ L 5 mmol/L p-NPG 和 170 μ L 1% PBS 反应,孵育 15 min,加 80 μ L 1mol/L NaOH 终止反应。酶空白组加 10 μ L 5 mmol/L p-NPP 和 190 μ L 5 mmol/L p-NPP 反应,孵育 15 min,加 80 μ L 1mol/L NaOH 终止反应。以 405 nm 处吸光度定量 p-NPP 释放量,按式(2)计算抑制率。

$$I=1-(A_1-A_2) / (A_3-A_4) \times 100\%$$
 (2)

式中, A_1 : 样品组吸光度; A_2 : 样品空白组吸光度; A_3 : 酶活性组吸光度; A_4 : 酶空白组吸光度。

1.4.3 化合物对胃癌细胞 HGC-27 抑制活性测定结果

采用 MTT 法,以紫杉醇为阳性对照,测定 5 个量大化合物。实验组取对数生长期细胞 100 μ L 铺于 96 孔板中,过夜贴壁,加含化合物的培养基,使化合物终浓度为 0.78、1.56、3.12、6.25、12.5、25、50、100 μ mol/L。培养 72 h,加 5 mg/mL MTT 试剂孵育 4 h。弃培养基,加 150 μ L DMSO 并震匀,并设对照组(以相同浓度紫杉醇代替化合物)和空白组(不含化合物和紫杉醇)。于酶标仪 490 nm 处测吸光度,按式(3)计算抑制率。

$$I=1-(A_1-A_2)/(A_1-A_3) \times 100\%$$
 (3)

式中, A_1 : 对照组吸光度; A_2 : 实验组吸光度; A_3 : 空白组吸光度。

1.5 分子对接

化合物 6 和 7 的结构用 Chem Draw 构建, α -葡萄糖苷酶和 PTP1B 蛋白结构来自 RCSB 数据库,在 Maestro 11.9 平台处理,由 Schrödinger Maestro 软件中 Glide 模块处理优化。由 Protein Preparation Wizard 模块处理蛋白质,由 Lig Prep 模块默认设置制备化合物结构。Glide 模块中,盒子大小为 15Åx15Åx15Å,由标准精度对接方法将化合物 6 和 7与 α -葡萄糖苷酶 靶点蛋白和 PTP1B 靶点蛋白进行分子对接。

2 实验结果

2.1 结构鉴定

化合物 1 黄色固体; EI-MS: m/z 267.2[M]⁺, 分子式为 $C_{10}H_{13}N_5O_{4\circ}$ ¹H NMR (400 MHz, DMSO- d_6) δ : 8.36 (1H, s, H-8) , 8.14 (1H, s, H-2) , 5.88 (1H, d, J=6.1 Hz, H-1'), 5.52 (1H, s, 5'-OH) , 5.46 (1H, s, 2'-OH) , 5.28 (1H, s, 3'-OH) , 4.61 (1H, t, J=5.6 Hz, H-2') , 4.15 (1H, dd, J=5.0, 2.9 Hz, H-3') , 3.97 (1H, q, J=3.4 Hz, H-4'), 3.64 (2H, m, H-5') , 3.39 (2H, s, -NH₂) ; 13 C NMR (100 MHz, DMSO- d_6) δ : 152.7 (C-2) , 150.0 (C-4) , 120.0 (C-5) , 157.9 (C-6) , 139.7 (C-8) , 88.4 (C-1') , 73.4 (C-2') , 71.1 (C-3') , 87.0 (C-4') , 61.8 (C-5') 。以上数据与文献^[8]报道一致,故鉴定该化合物为腺苷。

化合物 2 无色固体; EI-MS: m/z 210.1[M]⁺,分子式为 $C_{11}H_{18}N_2O_2$ 。¹H NMR(400 MHz,DMSO- d_6) δ : 7.98(1H,s,,-NH-),4.11(1H,t,J=7.4 Hz,H-5),3.96(1H,s,H-2),3.61(2H,s,H-7),3.18(1H,m,H-9a),2.14(1H,m,H-9b),2.03(2H,m,H-8),1.81(1H,m,H-10),1.24(2H,m,H-11),0.98(3H,d,J=7.1 Hz,H-13),0.83(3H,t,J=7.4 Hz,H-12); ¹³C NMR(100 MHz,DMSO- d_6) δ : 169.9(C-1),58.9(C-2),165.1(C-4),60.6(C-5),45.2(C-7),22.4(C-8),28.6(C-9),35.3(C-10),24.1(C-11),12.2(C-12),16.0(C-13)。以上数据与文献[9]报道一致,故鉴定该化合物为 cyclo-(S-Pro-S-Ile)。

化合物 3 无色晶体 (二氯甲烷:甲醇=1:1); EI-MS: m/z 142.3[M]⁺, 分子式为 C₆H₆O₄。 ¹H NMR(400 MHz,DMSO- d_6) δ : 9.07(1H, s, OH-5),8.02(1H, s, H-6),6.35(1H, s, H-3),4.29(2H, d, J = 5.7 Hz,H-1); ¹³C NMR(DMSO- d_6 ,100 MHz) δ : 168.6(C-2),110.3(C-3),174.4(C-4),146.1(C-5),139.7(C-6),59.9(C-1')。以上数据与文献[10]报道一致,故鉴定该化合物为 5-羟基-2-羟甲基-4H-哌喃-4-酮。

化合物 4 黄色粉末; EI-MS: m/z 250.6[M]⁺,分子式为 $C_{15}H_{22}O_{3}$ 。 ¹H NMR(400 MHz,DMSO- d_6) δ : 6.31(1H,s,H-13b),5.49(1H,s,H-13a),5.10(1H,s,H-5),4.05(1H,m,H-3b),1.68(3H,s,H-15),0.95(3H,d,J=6.0 Hz,H-14); ¹³C NMR(100 MHz,DMSO- d_6) δ : 137.7(C-1),38.1(C-2),121.8(C-3),123.6(C-4),68.1(C-5),37.0(C-6),43.0(C-7),34.3(C-8),28.5(C-9),24.6(C-10),41.0(C-11),

143.4(C-12),125.3(C-13),18.3(C-14),17.7(C-15)。以上数据与文献^[11]报道一致, 故鉴定该化合物为 3*α*-hydroxyartemisinic acid。

化合物 5 黄色固体; EI-MS: m/z 156.8[M]⁺,分子式为 $C_8H_{12}O_3$ 。 ¹H NMR(400 MHz,DMSO- d_6) δ : 5.74(1H,s,H-6),5.05(1H,d,J= 4.2 Hz,3-OH),3.74(1H,dd,J= 8.8,4.6 Hz,H-3),2.26(1H,d,J= 8.5 Hz,H-4a),2.21(1H,d,J= 7.8 Hz,H-4b),1.91(3H,s,H-8),1.08(3H,s,H-7); ¹³C NMR(100 MHz,DMSO- d_6) δ : 201.4(C-1),76.0(C-2),72.3(C-3),38.3(C-4),159.9(C-5),123.9(C-6),24.2(C-7),18.7(C-8)。以上数据与文献[12]报道一致,故鉴定该化合物为 leptosphaerone C。

化合物 6 白色固体; EI-MS: m/z 147.1[M]⁺,分子式为 $C_{10}H_{13}N$ 。 ¹H NMR(400 MHz,DMSO- d_6) δ : 6.98(1H,d,J= 7.8 Hz,H-7),6.85(1H,m,H-6),3.51(1H,s,-NH₂),2.68(2H,m,H-1),2.33(2H,m,H-4),1.55(4H,m,H-2,3); ¹³C NMR(100 MHz,DMSO- d_6) δ : 30.0(C-1),24.1(C-2,3,4),144.1(C-5),112.1(C-6),125.8(C-7),119.5(C-8),121.7(C-4a),138.0(C-8a)。以上数据与文献[^{13]}报道一致,故鉴定该化合物为1-氨基四氢化萘。

化合物 7 淡黄色针状晶体(二氯甲烷:甲醇=1:1);EI-MS:m/z 216.8[M]⁺,分子式为 $C_{13}H_{12}O_{3}$ 。 ^{1}H NMR(400 MHz,CDCl₃) δ :12.49(1H,s,OH-6),7.80(1H,s,H-4),6.90(1H,s,H-3),6.46(1H,s,H-7),5.71(1H,s,H-13a),5.15(1H,s,H-13b),2.61(3H,s,H-14),2.06(3H,s,H-11); ^{13}C NMR(100 MHz,CDCl₃) δ :157.7(C-2),99.2(C-3),123.4(C-4),121.7(C-5),159.4(C-6),102.3(C-7),161.4(C-8),116.6(C-9),203.8(C-10),26.6(C-11),131.9(C-12),113.5(C-13),19.0(C-14)。以上数据与文献[14]报道一致,故鉴定该化合物为泽兰素。

化合物 8 白色固体; EI-MS: m/z 204.0[M]⁺,分子式为 C₁₁H₁₂N₂O。¹H NMR(400 MHz,DMSO- d_6) δ : 7.72(1H,d,J= 7.9 Hz,H-4),7.52(1H,d,J= 8.1 Hz,H-7),7.29(1H,s,H-3),7.26(1H,d,J= 9.4 Hz,H-5),7.18(2H,d,J= 7.5 Hz,H-6),4.00(1H,m,H-11),3.45(2H,d,J= 4.9 Hz,H-10);¹³C NMR(100 MHz,DMSO- d_6) δ : 126.7(C-2),107.7(C-3),119.4(C-4),118.4(C-5),112.0(C-6),122.1(C-7),124.9(C-8),55.2(C-9),26.7(C-10),136.3(C-11),175.1(C-12)。以上数据与文献^[15]报道一致,鉴定为 β -吲哚基丙氨酸。

化合物 9 白色固体; EI-MS: m/z 234.1[M]⁺,分子式为 $C_{12}H_{14}N_2O_3$ 。¹H NMR (DMSO- d_6 , 400 MHz) δ : 8.01 (1H, d, J= 3.6 Hz, -NH-) ,6.93 (1H, d, J= 8.4 Hz, -NH-) ,6.66 (1H, d, J= 8.5 Hz, H-9,13),3.01 (1H, dd, J= 13.6,3.8 Hz, H-7b),2.73 (1H, dd, J= 13.7 Hz, H-7a),0.54 (3H, d, J= 7.0 Hz, H-14);¹³C NMR(100 MHz,DMSO- d_6) δ : 165.9 (C-1),50.3 (C-3),167.8 (C-4),56.1 (C-6),38.4 (C-7),126.5 (C-8),156.7 (C-9,13),115.3 (C-10,12),132.1 (C-11),19.7 (C-14)。以上数据与文献^[16]

报道一致,故鉴定该化合物为环(丙氨酸-酪氨酸)二肽。

化合物 10 白色粉末; EI-MS: m/z 504.1[M]⁺,分子式为 $C_{18}H_{32}O_{16}$ 。 ¹H NMR(400 MHz,DMSO- d_6) δ : 5.06(1H,d,J=3.5 Hz,H-1'),4.35(1H,d,J=10.0 Hz,H-1"),4.00(1H,m,H-3),3.75(1H,m,H-4),3.66(2H,m,H-6"),3.64(2H,m,H-5',5),3.62(2H,m,H-4',6'a),3.59(1H,m,H-3'),3.57(1H,m,H-6'b),3.26(2H,dd,m,H-2",5"),3.20(1H,m,H-2),3.01(1H,m,H-3"); ¹³C NMR(100 MHz,DMSO- d_6) δ : 64.3(C-1),81.5(C-2),75.2(C-3),73.4(C-4),71.9(C-5),67.7(C-6),92.6(C-1'),70.9(C-2'),(C-3'),70.6(C-4'),72.4(C-5'),63.4(C-6'),97.3(C-2,1"),77.2(C-5,2"),72.7(C-3"),70.0(C-4"),77.1(C-5"),61.5(C-6")。以上数据与文献[17]报道一致,故鉴定该化合物为 β -D-fructopyranocy-(2 \rightarrow 6)-D-glucopyranose。化合物 1~10 的结构见图 1。

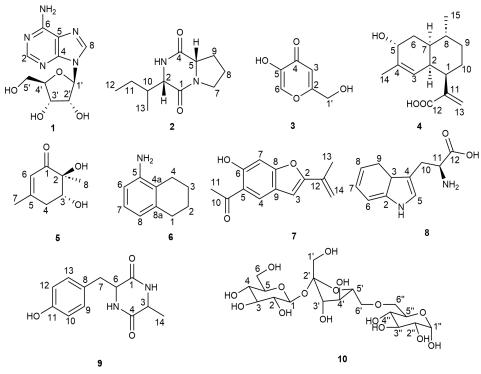


图 1 化合物 1~10 的化学结构

Fig.1 Chemical structures of compounds 1-10

2.2 活性测定结果

2.2.1 化合物对α-葡萄糖苷酶抑制活性测定结果

对华泽兰内生真菌 Septoriella phragmitis 提取分离所得化合物进行α-葡萄糖苷酶抑制活性测定,结果(见表 1)显示化合物 6、7 有α-葡萄糖苷酶活性(IC_{50} <<20 μg/mL), IC_{50} 值分别为 8.1、8.6 μg/mL。

表 1 化合物 1~10 对 α -葡萄糖苷酶的抑制活性 ($x \pm s, n = 3$)

Table 1 Inhibitory activity of compounds **1-10** on α -glucosidase ($\bar{x} \pm s, n = 3$)

样品 Sample	IC_{50} (µg/mL)	样品 Sample	IC ₅₀ (μg/mL)
阳性药 Positive drug	4.6±0.998	6	8.1±0.867
1	>50	7	8.6±0.889
2	>50	8	>50
3	>50	9	>50
4	39.3±1.055	10	21.1±1.053
5	>50		

2.2.2 化合物对 PTP1B 抑制活性测定结果

对华泽兰内生真菌 Septoriella phragmitis 提取分离所得化合物进行 PTP1B 抑制活性测定,结果(见表 2)显示化合物 6、7、9 有较强 PTP1B 活性(IC_{50} <20 $\mu g/mL$), IC_{50} 值分别为 6.5、8.2、0.5 $\mu g/mL$,活性优于阳性药正钒酸钠(7.5 $\mu g/mL$)。

表 2 化合物 1~10 对 PTP1B 的抑制活性 ($\bar{x} \pm s, n = 3$)

Table 2 Inhibitory activity of compounds **1-10** on PTP1B $(\bar{x} \pm s, n = 3)$

样品 Sample	IC ₅₀ (μg/mL)	样品 Sample	IC ₅₀ (μg/mL)
阳性药 Positive drug	7.5±0.998	6	6.5±0.934
1	48.3±1.132	7	8.2±0.956
2	>50	8	>50
3	>50	9	0.5±1.257
4	>50	10	20.2±1.345
5	38.5±1.224		

2.2.35个化合物对胃癌细胞 HGC-27 抑制活性测定结果

对华泽兰内生真菌 Septoriella phragmitis 提取分离所得 5 个量大的化合物进行胃癌细胞 HGC-27 抑制活性测定,结果(见表 3)显示化合物 5 和 6 对胃癌细胞 HGC-27 有抑制活性, IC_{50} 值分别为 12.2、16.8 $\mu g/mL$ 。

表 3 化合物对肿瘤细胞 HGC-27 的抑制活性 ($x \pm s, n = 3$)

Table 3 Inhibitory activity of compounds on tumor cell HGC-27 ($\bar{x} \pm s, n = 3$)

样品 Sample	IC ₅₀ (μg/mL)
阳性药 Positive drug	0.004±0.02

2	>100
3	>100
4	>100
5	12.2±0.93
6	16.8±1.02

2.3 分子对接

选取对 α -葡萄糖苷酶和 PTP1B 有双酶抑制活性的化合物 6 和 7 进行分子对接(图 2、图 3),结果显示结合能均小于-6 kcal/mol(见表 4)。由 Pymol2.1 软件得化合物与蛋白的结合模式,可看到化合物 6 和 7 与 α -葡萄糖苷酶靶点蛋白口袋相结合的氨基酸残基,与 His 203 氨基酸形成氢键,与 Ala 200、Ile 143、Phe 144 形成疏水作用,其苯环部分与 Phe 164 氨基酸成 pi-pi 共轭作用。化合物 7 与 α -葡萄糖苷酶靶点蛋白能形成有效相互作用,与 Asn-258,His 203 氨基酸形成氢键,与 Asp 199 形成 Anion-pi 共轭,与 Ala 200、Tyr 63、His 103 形成疏水作用。化合物 6 与 PTP1B 靶点蛋白的 Asn 193 氨基酸形成氢键,与 Leu 192,Ile 281 形成疏水作用,其苯环部分与 Phe 196、Phe 280 氨基酸成 pi-pi 共轭作用。化合物 7 与 PTP1B 能形成有效相互作用,与 Glu 200 氨基酸形成氢键,与 Phe 196、Phe 280 成 pi-pi 共轭,与 Leu 192 形成疏水作用。

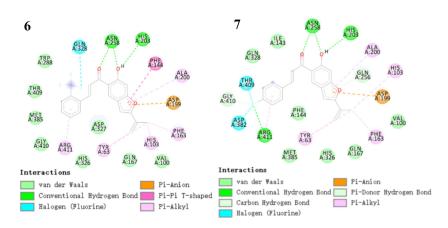


图 2 α-葡萄糖苷酶蛋白的氨基酸残基与化合物 6 和 7 的结合模式

Fig.2 The binding mode of amino acid residues of α -glucosidase protein to compounds 6 and 7

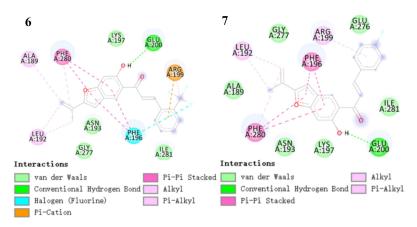


图 3 PTPIB 蛋白的氨基酸残基与化合物 6 和 7 的结合模式

Fig.3 The binding mode of amino acid residues of PTP1B protein to compounds 6 and 7

表 4 2 个化合物与α-葡萄糖苷酶和 PTP1B 靶标的对接结果

Table 4 Docking results of two compounds with α -glucosidase and PTP1B targets

/ L. A. then	结合能		
化合物 Compound ————	Binding energy (kcal/mol)		
	α-葡萄糖苷α-Glucosidase	PTP1B	
6	-7.01	-6.81	
7	-7.01	-7.28	

3 讨论与结论

本研究对该菌株的化学成分进行了探索,从中获得了 10 个化合物,其中包括 5 个生物碱类、4 个酚类、1 个苯并呋喃类,均为首次从该菌株中分离得到,且首次发现微生物可产植物华泽兰的活性成分——泽兰素。药理活性测定结果表明,化合物 6 和 7 分别对α-葡萄糖苷酶具有较好的抑制活性;化合物 6、7 和 9,分别具有较好的 PTP1B 抑制活性,且化合物 6 和 9 的活性优于阳性药正钒酸钠;化合物 5 和 6 与其他化合物相比,对胃癌细胞 HGC-27 具有一定的抑制活性。进一步通过分子对接实验,化合物 6 和 7 均能与α-葡萄糖苷酶或 PTP1B 靶点蛋白的氨基酸残基存在氢键、疏水、共轭等多种相互作用。目前尚未有文献报道真菌 Septoriella phragmitis 的次级代谢产物,该研究首次报道了该菌株的次级代谢产物,所发现的部分化合物具有糖尿病双靶点抑制活性。

参考文献

- Zeng QT,Yuan T.Study on the chemical constituents of endophytic fungus *Paraconiothyrium* sp. YLHJ01 from *Artemisia selengensis*[J].Nat Prod Res Dev(天然产物研究与开发),2023,35:781-786.
- 2 Zhao ZH,Wang XY,Zhan HQ.The application of eupatorin in the preparation of depression drugs(泽兰素在制备治疗抑郁症药物中的应用): CN105919991A[P].2016-09-07.
- 3 Han XM, Huang F, Jiao mL, et al. Antidepressant activity of euparin: involvement of monoaminergic

- neurotransmitters and SAT1/NMDAR2B/BDNF signal pathway[J].Biol Pharm Bull,2020,43:1490-1500.
- 4 Khaleghi F,Jantan I,Din LB,et al.Immunomodulatory effects of 1-(6-hydroxy-2-isopropenyl-1-benzofuran-(5-yl)-1-ethanone from *Petasites hybridus* and its synthesized benzoxazepine derivatives[J].J Nat Med,2014,68:351-357.
- 5 Mohammadi M,Yousefi M,Habibi Z,et al.Chemical composition and antioxidant activity of the essential oil of aerial parts of *Petasites albus* from Iran:a good natural source of euparin[J].Nat Prod Res,2012,26:291-297.
- 6 Zhang JF,Lin J,Xu HY,et al.Isolation of endophytic fungi from *Eupatorium adenophorum* and their antibacterial,anti-tumor activities[J].Chin Tradit Pat Med(中成药),2020,42:133-138.
- 7 Liu CX,Li H,Yang HS,et al.A plant endophytic fungus producing eupatorin and its application(一种产泽兰素的植物内生真菌及其应用):CN202211434646.1[P].2022-11-16.
- 8 Casella TM,Eparvier V,Mandavid H,et al.Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes:Isolation of antibacterial agent pyrrocidine C from *Lewia infectoria* SNB-GTC2402[J].Phytochemistry,2013,96:370-377.
- 9 Zhuang LW,Zhou WJ,Mao YL,et al.Isolation and purification of cyclodipeptide antialgae compounds from Macroalgae[J].Bull Mar Sci(海洋通报),2022,41:703-712.
- 10 Gong J,Tang H,Geng WL,et al.Cyclic dipeptides in actinomycete *Brevibacterium* sp. associated with sea cucumber *Apostichopus japonicus* Selenka:isolation and identification[J].Acad J Sec Mil Med Univ(第二军 医大学学报),2013,32:1284-1287.
- 11 Liu F,Zhang DJ,Li YG,et al.A new antifungal cyclic lipopeptide from *Bacillus marinus* B-9987[J].Helv Chim Acta,2010,12:251-256.
- 12 Yin F,Lou JF.Study on the chemical constituents of *bergamot*[J].Chin J Nat Med(中国天然药物),2004,40:20-21.
- 13 Chen JH,Lan XP,Liu Y,et al.The effects of diketopiperazines from *Callyspongia* sp. on release of cytokines and chemokines in cultured J774A.1 macrophages[J].Bioorganic Med Chem Lett,2012,22:3177-3180.
- 14 Zhang QQ,Chen JW,Ma YT,et al.Study on chemical constituents of roots of *Eupatorium adenophorum*[J].Chin Tradit Pat Med(中成药),2018,49:4798-4802.
- 15 Zhu JH.Novel biotransformation processes of dihydroartemisinic acid and artemisinic acid to their hydroxylated derivatives by two plant cell culture systems[J].Process Biochem,2010,6:241-246.
- 16 Xu XY,Zhang XY,He F,et al.Two new compounds from gorgonian-associated fungus Aspergillus sp.[J].Nat Prod Commun,2013,8:1069-1070.
- 17 He WW,Xu YC,Fu PZ,et al.Cytotoxic indolyl diketopiperazines from the *Aspergillus* sp.GZWMJZ-258,endophytic with the medicinal and edible plant *Garcinia multiflora*[J].J Agric Food Chem,2019,67:381-384.

收稿日期: 2023-11-20 接受日期:

基金项目: 天然产物研究与利用湖北省重点实验室(三峡大学)开放基金项目(2022NPRD03); 国家级大学生创新创业训练计划项目(20231075023)

*通信作者 Tel: 0717-6397478; E-mail: 17371593221@163.com