天然产物研究与开发 ›› 2024, Vol. 36 ›› Issue (12): 2102-2115.doi: 10.16333/j.1001-6880.2024.12.011 cstr: 32307.14.1001-6880.2024.12.011

• 开发研究 • 上一篇    下一篇

多成分含量测定结合网络药理学识别湘枳壳种质资源品质评价的质量标志物

杨   莉1,2,唐   其1,2,范明慧1,3,王   燕1,2,张睿胤1,2,周   铁3,陈   鹏3*,郑亚杰1,2*   

  1. 1湖南农业大学园艺学院;2国家植物功能成分利用工程技术研究中心;3湖南省农业科学院园艺研究所,长沙 410128
  • 出版日期:2024-12-26 发布日期:2024-12-26
  • 基金资助:
    湖南省农业科技创新资金(2023CX71,2023CX23);湖南省自然科学基金面上项目(2020JJ4357)

Screening of quality markers for the quality evaluation of Hunan Aurantii Fructus germplasm resources based on multicomponent quantitative analysis combined with network pharmacology

YANG Li1,2,TANG Qi1,2,FAN Ming-hui1,3,WANG Yan1,2,ZHANG Rui-yin1,2,ZHOU Tie3,CHEN Peng3*,ZHENG Ya-jie1,2*   

  1. 1College of Horticulture,Hunan Agricultural University;2National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients;3Hunan Horticultural Research Institute,Hunan Academy of Agricultural Sciences Changsha 410128,China
  • Online:2024-12-26 Published:2024-12-26

摘要:

建立多指标成分的色谱定量分析方法,结合网络药理学、分子对接技术和多变量统计分析从“谱-效”关系找出用于湘枳壳种质资源品质评价的质量标志物(quality marker,Q-Marker)。采用高效液相色谱法、顶空固相微萃取-气相色谱法对湖南省多个县市枳壳种质资源样本进行含量测定;对多指标成分进行靶点搜集和网络药理学分析,构建“成分-靶点-通路”网络,并预测候选Q-Marker和核心作用靶点;通过分子对接技术对配体与受体结合活性进行理论模拟找出关键Q-Marker,借助主成分荷载因子分子和聚类分析挖掘出区分枳壳种质资源样本的Q-Marker。结果表明种质资源样本以柚皮苷、新橙皮苷和D-柠檬烯含量最高,各目标化合物的含量差异波动较大;橘皮素等7个候选Q-Marker通过PI3K/AKT和RAS/MAPK通路的PIK3CD等7个核心靶点发挥抗氧化、抗炎等作用,它们之间的分子对接活性良好;多变量统计分析表明柠檬苦素等5个Q-Marker可用于区分种质资源样本,它们有类群特异性,但样本间差异与地域无关。该方法可对湘枳壳种质资源进行品质评价,为品种选育提供参考。

关键词: 湘枳壳种质资源, 质量标志物, 色谱法, 网络药理学, 分子对接技术, 多变量统计方法

Abstract:

The study aims to identify quality markers (Q-Markers) for the evaluation of Hunan Aurantii Fructus (HAF) germplasm resources based on the "spectrum-efficacy" correlation by the establishment of chromatographic quantitative analysis of multiple components,combining network pharmacology,molecular docking technology,and multivariate statistical analysis.High performance liquid chromatography and headspace solid-phase microextraction-gas chromatography were used to perform content determination of germplasm resource samples from counties and cities in Hunan.Target collection and network pharmacology analysis were carried out on multi-components to construct a "component-target-pathway" network and predict candidate Q-Markers and core targets.Molecular docking technology was used to theoretically simulate the binding activity of ligands and receptors to identify key Q-Markers.Principal component loading factor analysis and cluster analysis were utilized to excavate Q-Markers that distinguish HAF germplasm resource samples.The results showed that the germplasm resource samples had the highest contents of naringin,neohesperidin,and D-limonene,with significant fluctuations in the content differences of each target compound. Seven candidate Q-Markers,including tangeretin,exerted antioxidant and anti-inflammatory effects through seven core targets such as PIK3CD in the PI3K/AKT and RAS/MAPK pathways,demonstrating good molecular docking activity among them.Multivariate statistical analysis indicated that five Q-Markers,including limonin,could be used to differentiate germplasm resource samples.These markers were group-specific,while the differences between samples were unrelated to geography.This method can evaluate the quality of HAF germplasm resources and furnishing a valuable tool for variety selection and breeding initiatives.

Key words:

中图分类号:  R282.4