天然产物研究与开发 ›› 2024, Vol. 36 ›› Issue (2): 303-313.doi: 10.16333/j.1001-6880.2024.2.013

• 开发研究 • 上一篇    下一篇

工业大麻中大麻二酚酸脱羧转化体系研究

蔡宏达1,2,3,刘梦然4,王崑仑5,唐翠曼1,2,3,王   彬1,2,3,高继往1,2,3,赵修华1,2,3*   

  1. 1东北林业大学化学化工与资源利用学院;2东北林业大学森林植物生态学教育部重点实验室;3东北林业大学林源活性物质生态利用黑龙江省重点实验室,哈尔滨 150040;4中国海洋大学海洋生物遗传学与育种教育部重点实验室,青岛 266003;5黑龙江省农业科学院食品加工研究所,哈尔滨150086
  • 出版日期:2024-02-23 发布日期:2024-02-23
  • 基金资助:
    中央高校基本科研业务费专项(2572022CG04)

Study on the decarboxylation transformation system of cannabidiolic acid in Cannabis sativa L.

CAI Hong-da1,2,3,LIU Meng-ran4,WANG Kun-lun5,TANG Cui-man1,2,3,WANG Bin1,2,3,GAO Ji-wang1,2,3,ZHAO Xiu-hua1,2,3*   

  1. 1College of Chemistry, Chemical Engineering and Resource Utilization,Northeast Forestry University;2Key Laboratory of Forest Plant Ecology,Ministry of Education,Northeast Forestry University;3Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances,Northeast Forestry University,Harbin 150040,China;4Ministry of Education Key Laboratory of Marine Genetics and Breeding,Ocean University of China,Qingdao 266003,China;5Institute of Food Processing,Heilongjiang Academy of Agricultural Sciences,Harbin 150086,China

  • Online:2024-02-23 Published:2024-02-23

摘要: 为揭示工业大麻中大麻二酚酸(cannabidiolic acid,CBDA)脱羧转化机理,本研究以工业大麻(Cannabis sativa L.)为原料,采用基团贡献法和Watson公式获得工业大麻中CBDA脱羧转化生成大麻二酚(cannabidiol,CBD)过程中各组分基本热力学参数。在此基础上,根据经典热力学公式确定40~140 ℃温度范围内工业大麻中CBDA转化生成CBD反应吉布斯自由能,并得出反应平衡常数及平衡转化率。通过热脱羧转化实验,分析温度及工业大麻花叶含水量对CBDA脱羧转化的影响,结合CBD转化生成率最终确定大麻CBDA热脱羧转化机理函数模型及转化活化能。研究结果表明:在40~140 ℃温度范围内,CBDA热脱羧转化可自发进行,且随着温度升高自发进行趋势越大。在热脱羧转化过程中,CBD转化率增长与温度和含水量呈正相关。通过动力学函数模型拟合,工业大麻花叶中CBDA脱羧转化最概然模型符合F1模型,转化活化能为83.77 kJ/mol。综上所述,在40~140 ℃温度范围内工业大麻中CBDA可自主脱羧转化生成CBD,研究结果可为工业大麻产业化加工获得高含量CBD条件选择提供理论支持和实验支撑。

关键词: 工业大麻, 大麻二酚酸, 大麻二酚, 热力学, 动力学模型, 转化活化能

Abstract:

In order to reveal the decarboxylation transformation mechanism of cannabidiolic acid (CBDA) in Cannabis sativa L.,the basic thermodynamic parameters in the transformation process were obtained by the group contribution method and Watson formula.Then,the reaction Gibbs free energy,reaction equilibrium constant and equilibrium conversion rate were calculated according to the classical thermodynamic formula from 40 ℃ to 140 ℃.The effects of temperature and water content in C. sativa flowers and leaves on the decarboxylation of CBDA were analyzed by thermal decarboxylation conversion experiment.The thermal decarboxylation conversion mechanism function model and conversion activation energy of CBDA were determined according to the conversion rate of CBD.The results showed that the thermal decarboxylation of CBDA could occur spontaneously from 40 ℃ to 140 ℃,and the spontaneous trend increased with the increase of temperature.In the process of thermal decarboxylation,the increase of CBD conversion rate was positively correlated with temperature and water content of flowers and leaves.By fitting with the kinetic function model,the most probable model of CBDA decarboxylation conversion in C. sativa flowers and leaves conforms to the F1 model.The activation energy of the reaction conversion calculated is 83.77 kJ/mol by this model.In summary,CBDA in C. sativa can be automatically decarboxylated to CBD from 40 ℃ to 140 ℃.The results provide theoretical and experimental support for the selection of high content CBD conditions for C. sativa industrial processing.

Key words: Cannabis sativa L., cannabidiolic acid, cannabidiol, thermodynamics, kinetic modeling, reaction activation energy

中图分类号:  TK6