天然产物研究与开发 ›› 2025, Vol. 37 ›› Issue (5): 849-858.doi: 10.16333/j.1001-6880.2025.5.006 cstr: 32307.14.1001-6880.2025.5.006

• 研究简报 • 上一篇    下一篇

基于HPLC特征图谱与多成分动态分析的黄精酒制过程成分变化规律及质量评价研究

詹智洪1, 2, 3,魏家保1, 2,3 *,唐双燕1, 2, 3,谢嘉慧1, 2, 3,胡  雨1, 2, 4,张丽君1, 2, 4
  

  1. 1华润三九现代中药制药有限公司,惠州 516000;2中药配方颗粒安徽省重点实验室,淮北 235000;3华润三九医药股份有限公司,深圳 518000;4安徽华润金蟾药业有限公司,淮北 235000
  • 出版日期:2025-05-28 发布日期:2025-05-26
  • 基金资助:
    深圳市科技计划(JSGG20191129093418578);淮北市科技计划(KH2022AB007)

Component variation patterns and quality evaluation of Polygonati Rhizoma during wine processing based on HPLC fingerprint and multi-component dynamic analysis

ZHAN Zhi-hong1, 2, 3, WEI Jia-bao1, 2, 3*, TANG Shuang-yan1, 2, 3, XIE Jia-hui1, 2, 3, HU Yu1, 2, 4, ZHANG Li-jun1, 2, 4   

  1. 1China Resources Sanjiu Modern Chinese Medicine Pharmaceutical Co., Ltd., Huizhou 516000, China;2 Anhui Provincial Key Laboratory of Chinese Medicine Formulation Granules, Huaibei 235000, China;3 China Resources Sanjiu Pharmaceutical Co., Ltd., Shenzhen 518000, China;4 Anhui China Resources Jintoad Pharmaceutical Co., Ltd., Huaibei 235000, China
  • Online:2025-05-28 Published:2025-05-26

摘要:

建立黄精特征图谱及果糖、蔗糖的含量测定方法,考察黄精不同酒制时间的化学成分变化并探寻其成分变化规律。以性状、醇溶性浸出物、多糖含量、果糖与蔗糖含量、特征图谱特征峰数量及峰面积为评价指标,综合比较优选出黄精最佳酒制时间,并建立该方法酒制所得酒黄精饮片的特征图谱。研究结果显示,黄精和酒黄精HPLC特征图谱分别呈现10、9个特征峰,其中6个特征峰由黄精传递至酒黄精,酒制过程中新增3个特征峰,4个特征峰消失。指认黄精各峰为尿苷(峰1)、腺嘌呤(峰4)、5-羟甲基糠醛(5-hydroxymethylfurfural,5-HMF)(峰5)、鸟苷(峰6)、胸苷(峰7)、色氨酸(峰8)、腺苷(峰9)、黄精碱A(峰10),酒制后酒黄精5号峰5-HMF峰面积显著增大,新增成分7号峰为5-(羟基甲基)-1H-吡咯-2-甲醛;浸出物和果糖含量呈增加趋势;蔗糖含量先增加后减少,在酒制8 h达到最大值;多糖含量呈减少趋势。综上所述,本研究建立的特征图谱及多成分含量检测方法,展现了黄精酒制过程中的多种成分变化规律,可为酒制工艺的优化提供数据参考,为黄精与酒黄精的质量控制提供新的评价方法。

关键词: 黄精, 酒制时间, 特征图谱, 多成分, 含量测定

Abstract:

This study aims to establish characteristic fingerprints of Polygonati Rhizoma and develop a method for quantifying fructose and sucrose, combined with multivariate dynamic analysis to investigate the chemical component variations and explore their dynamic patterns during different wine-processing durations, thereby providing a scientific basis for quality control and processing mechanism elucidation. Comprehensive evaluation indicators, such as morphological characteristics, alcohol-soluble extractives,the content of polysaccharides, fructose, and sucrose, characteristic peak numbers, and peak areas, were applied to optimize wine-processing duration and establish a characteristic fingerprint for wine-processed Polygonati Rhizoma. Results revealed that raw and wine-processed Polygonati Rhizoma exhibited respectively ten and nine characteristic peaks in HPLC chromatograms, respectively. Six peaks were retained during processing, three new peaks emerged and four peaks disappeared. Key components were identified as uridine (peak 1), adenine (peak 4), 5-hydroxymethylfurfural (5-HMF, peak 5), guanosine (peak 6), thymidine (peak 7), tryptophan (peak 8), adenosine (peak 9), and polygonatine A (peak 10). Notably, the peak area of 5-HMF (peak 5) significantly increased post-processing, and a newly formed peak 7 was identified as 5-(hydroxymethyl)-1H-pyrrole-2-carbaldehyde. Alcohol-soluble extractives and fructose content showed an upward trend, sucrose content peaked at 8 h before declining, and polysaccharides gradually decreased. In conclusion, the characteristic fingerprint combined with multi-component quantitative analysis establishes a systematic revelation of dynamic transformation patterns of chemical constituents Polygonati Rhizoma during wine processing. This approach provides data-driven insights for optimizing wine-processing parameters and proposes a novel quality assessment strategy applicable to both raw and processed Polygonati Rhizoma.

Key words: Polygonati Rhizoma, processing time, characteristic fingerprint, multi-component, content determination

中图分类号:  R917